
Real-Time Identity Tracking via Adversarial
Networks

Taraka Pranav Rayudu
Department of Computer Science
The University of Texas at Austin

Austin, Texas
tarakapranav@gmail.com

Shristi Chitlangia
Department of Computer Science
The University of Texas at Austin

Austin, Texas
shristichitlangia2001@gmail.com

Ajith Kemisetti
Department of Computer Science
The University of Texas at Austin

Austin, Texas
kemisettia@gmail.com

Abstract—In various applications of Human-Robot Interac-
tions, from a robot aiding with search and rescue operations, to
healthcare and social interactions, an autonomous robot will need
to follow its human companion in order to perform its respective
operations. In the past, many robotics applications have been
designed to recognize people in a camera frame. In a static view-
frame, there have been successful implementations of identifying
people using methods like YOLO. However, tracking people in
a dynamic or moving view-frame has continued to remain a
challenge. This is due to factors such as people occluding each
other when walking, lighting and angle of a given person, and
camera angle in capturing the movement of people. In this paper,
we seek to further enhance the ability of a robot to track people
in real-time with good performance.

We implemented the algorithm known as You-Only-Look-Once
(YOLO) to obtain bounding boxes around a person in a frame
of a video. We then went on to implement a tracking algorithm
known as DeepSort to further track people in a dynamic frame.
We found that our approach works better in situations where
the camera angle is as close to a frontal view of the movement of
people as possible. In cases of occlusion, we obtained reasonably
successful results. However, detecting people quickly and reliably
in areas of high occlusion and population density continues to
remain a challenge.

I. INTRODUCTION

While computer models and robots can generally identify
various objects and track them in real-time with relative
accuracy, most models cannot do the same for people. Object-
recognition techniques using You Only Look Once (YOLO)
contribute to the manipulation and movement of objects.
However, in the context of people, for robots it continues to
remain a difficult task of attaching a unique identity to each
human body in either a static or dynamic view-frame. An
evident problem with this is the complexity associated with
the processing of real-time image frames.

In the case of occlusion, lighting differences, or moving
bodies in a given data set, the robot is unable to maintain the
initial bounding boxes (coordinate references to an object). As
a result it loses track of it as the frames progress until it is
re-detected. This makes it difficult for robots to consistently
track people in a view-frame and makes future applications of
following people around a tricky area of research.

As increasing investment and focus towards the ability for
robots to work with humans continues to grow, a robot being
able to follow a human companion has become paramount.

The application can be seen in search and rescue operations,
social interactions, and health functionalities. However, the
first step in achieving this is to successfully track people in a
real-time dynamic view-frame setting. Thus, this paper seeks
to further enhance the robot’s functionality to track identities
in real-time.

This paper begins to explore the use of YOLO, an appli-
cation of modified Convolutional Neural Networks (CNN),
to first create bounding boxes on people. Afterwards, the
DeepSORT algorithm is implemented to track them over every
frame. To test and research the algorithms, we make use of
the Multiple Object Tracking Benchmark System (MOT) that
has data sets of people walking in a view-frame. The objective
is for the robot to successfully track each of the individuals
in real-time. Our intentions are to make the bounding boxes
around entities more consistent and prevent them from flicker-
ing as frequently. We intend to build on previous work in this
paper and use these studies as motivation for this next step.

There has been research focused on having robots assign
human identity to tracked faces and bodies using the cam-
era view and implementing the Hungarian algorithm. Other
approaches simultaneously track a time-varying number of
people in three-dimension and perform visual servoing (VS)
[1]. This system of tracking and VS enables the robot to
track several people in a room while compensating for large
movements and also while visually controlling the robot to
keep a selected person of interest within the field of view.
This kind of method approaches a more Bayesian probabilistic
model of formulation and uses statistical modeling.

A pressing challenge that comes with identity tracking is
the occlusion of a person behind another person, which often
causes an identity switch. DeepSORT provides an interesting
twist on the traditional Simple Online Realtime Tracking
(SORT) approach for tracking people. Essentially, it integrates
appearance information which in turn incorporates a deep as-
sociation metric. The paper adopts a single-hypothesis tracking
methodology, which is more beneficial for this project as it is
cleaner and keeps the camera more focused. [5].



II. BACKGROUND

A. YOLOv3

In this paper, we use a pre-trained YOLOv3 (You Only
Look Once) architecture to generate a set of bounding boxes
from a single frame. Version 3 contains incremental improve-
ments over the original architecture [3]. YOLO is a single
convolutional neural network (CNN) that uses features from
the entire image when making predictions. This allows YOLO
to maintain high-generalizability and remain flexible enough to
be applied for new problem spaces such as this one. Moreover,
YOLO can be expressed entirely as a single CNN which
removes the need for a complex pipeline.

To generate its detections, YOLO first divides each image
into an NxN grid of cells where each cell is responsible for
predicting bounding boxes and reflect a confidence score for
those boxes. The cell also predicts a regression for the set
of classes that the bounding boxes can represent. Each of the
bounding box regressions contain (x, y, w, h, conf) where x and
y represent the center of the bounding box with respect to the
grid cell, and w and h (width and height respectively) represent
the dimensions of the image in relation to the entire image.
Conf is the confidence that the box is accurate. By multiplying
the class regressions with the confidence for the bounding box,
we get a list of confidence scores of classes for that cell. The
final bounding boxes are obtained after filtering through all the
proposed bounding boxes using a Non-Maximal Suppression
(NMS) algorithm described below.

1) Sort proposed detections by confidence score and place
into proposed list

2) Remove the highest proposed detection (D) and place
into final list

3) Loop through remaining proposed detection (B)
4) Remove B from proposed list if

IOU(D,B)≥threshold
5) Repeat from 2 until proposed detections is empty

NOTE: IOU stands for Intersection over Union
The implementation of YOLO leads to some inherent

limitations. Since YOLO limits the possible predictions to
just B bounding boxes per cell, cases where each cell has
more than the correct predictions of bounding boxes results
in misses. When detecting multiple relatively small objects
in high density (ex. pedestrians at cross-walk), this effect is
exacerbated and presents a significant problem.

Regardless, given that YOLO is a single CNN, it remains
one of the fastest and most flexible architectures with relatively
high accuracy in comparison to other architectures like RCNN
or Fast-RCNN [2]. This makes it a good solution for predicting
bounding boxes for our use-case.

B. DeepSORT

DeepSORT is a deep association metric that allows us to
assign identities to predetermined detections/bounding boxes.
The approach can be broken down into two components:
Kalman filtering and frame-by-frame data association. The
main purpose of the recursive Kalman filter is to reduce noise

in the images and produce more accurate representations based
on a joint probability distribution of the given variables. In this
scenario, the Kalman filter is given the bounding box centroids
(the coordinates of the center of the bounding box with respect
to the global frame), the height of the bounding box, the aspect
ratio, and an optional feature vector describing the features of
the detection. For this study, since the feature vector needs to
be run through an encoder which might degrade performance
significantly, we leave it out. Velocity is held constant for
simplicity’s sake. It performs a Gaussian distribution to model
future positions for that detection. Then, it performs a data
association described below.

The Kalman filter produces a useful distribution that new
detections can be compared to. These detections need certain
metrics to accurately be placed next to the existing distribution.
For motion, the chosen metric is Mahalanobis distance, and to
handle occlusion, a cosine metric is also used. A final matching
cascade algorithm is implemented to ensure that a person who
has been occluded for extended periods of time is not left out
of the picture.

Since these metrics aren’t learned and are more or less only
useful online, a separate, offline, discriminator is needed to
figure out where people are. For this, the paper uses YOLO
as described above. [5]

III. METHODOLOGY

DeepSORT and YOLOv3 were used together via a python
script we wrote called controller.py. This script effectively fed
the output of YOLOv3 as an input for DeepSORT. YOLOv3
returned bounding boxes around all of the identities in the
frame of a video, which DeepSORT needed to perform its
statistical modeling, primarily its Kalman Filter. controller.py
was our main contribution towards extending previous work
on this topic.

The functionality of controller.py can be divided into 5
steps: parse user-given arguments, initialize the DeepSORT
tracker, initialize the YOLOv3 DarkNet model, define a frame
callback method, and process every frame using this method.
Each step makes a call to either library, with the end goal of
using the two together to track in real-time.

A. Parsing user arguments

Both Yolov3 and DeepSORT require certain user inputs
that are used to parameterize their functionality. A significant
component to the input is an input folder that stores the
necessary data, which makes it possible for the two systems
to work together and track. Among these arguments, only the
directory of the MOT sequence is required. This is because
the script will later gather the sequence information from that
folder and output a live video feed of the real-time tracking.
Since every other parameter has a default value that is only
relevant to that particular library, only the sequence directory
argument will be discussed here.



B. Initializing DeepSORT

After parsing the user arguments, the script we wrote then
takes steps to initialize the DeepSORT tracker. It first pre-
processes all of the information it finds within the sequence
directory. This directory, in our case, will be the folder with
the MOT16 image filenames, detections, and ground truths.
These ground truths are critical for evaluation of our results.
The tracker then initializes its distance metric. This metric
can help quantify the distance between a prediction and a
detection, which would help to recognize the correct prediction
for a detection. The tracker here used a Nearest Neighbor
metric as a policy for selecting the right prediction. On a
high level, this policy lets a detection’s nearest neighbors vote
on its prediction. The prediction with the highest number of
votes is the prediction that will get assigned to that detection.
The mechanism for deciding what the nearest neighbors is
determined through a cosine distance. This distance leverages
the dot products of two vectors in order to understand their
proximity to each other as follows:

cos(t, e) =
te

‖t‖‖e‖
=

∑n
i=1 tiei√∑n

i=1 (ti)
2
√∑n

i=1 (ei)
2

(1)

The formula above is a normalized sum of the products of
all the corresponding components of the two vectors. Such
a mechanism contributes the detections that constitute the
current one’s nearest neighbor set.

C. Initializing YOLOv3

Initializing the YOLOv3 model was not quite as com-
plicated as initializing the DeepSORT tracker. This simply
required initializing the DarkNet model (the Neural Network
architecture used by YOLO) with the input image size. This
was 416 in our case. Afterward, we simply loaded the model
with the pre-trained weights we downloaded and set it to
evaluate instead of train.

D. Defining a frame callback method

The purpose of defining a frame callback method is to put
every frame in a video feed through both the YOLO model
and DeepSORT tracker. Without this method, only one of the
two libraries could be used per frame.

Reading the frames included a call to OpenCV to read the
frame in color. The next step was to pass this frame to the
YOLOv3 model. The latter took the form of a Tensor variable
in order to suffice the parameter of a PyTorch model (included
simple conversion of the image to a Tensor variable).

The key observation that enabled the ultimate connection
was recognizing the output of the model to also be a tensor.
Tensors, in general, are convenient for neural network com-
putations, but not for reading. This prompted a conversion of
the tensor to a numpy array, which proved to be an easier
solution. By iterating through the array, we retrieved tuples
of bounding boxes with information regarding bounding box
locations, class predications, and class confidences. Since the
DeepSORT tracker required detection objects to run, we had
to manipulate the data derived from these tuples. A detection

object requires the top left x,y coordinates of the bounding
box, width, height, object confidence, class score, and class
prediction. The confidence is the percent certainty of the class
prediction.

E. Process every frame

With the frame callback method written, processing the
entire video was as simple as calling the method for every
frame with one caveat: writing results to a text file. The
purpose of this text file is to understand the contributions
made by our approach, mainly through comparison to YOLO’s
ground truths. The information to write out was rather simple:
frame index, frame id, bounding box top-left coordinates,
width, and height.

IV. EXPERIMENTAL SETUP

As described above, our first step in conducting the experi-
ment was implementing YOLOv3 and PyTorch in order to get
the initial bounding boxes of people in a static frame. We used
the PyTorch-YOLOv3 implementation [4] to log the average
number of boxes per frame and compare it against the ground
truth. In this case the ground truth is provided by the MOT-
16 data sets which record the bounding box predictions and
actual coordinates in respect to the frame.

Additionally, using our DeepSORT implementation, we
were able to log the average number of identity loses (flick-
ering boxes) that occur throughout the video.

In a combination of these two procedures, our controller.py
file implements the two features and is successfully able to
track the bounding boxes in real-time while also logging the
average frame rate of each sequence of the data set.

The experimentation includes testing on five of the MOT-
16 data sets (MOT16-02, MOT16-04, MOT16-05, MOT16-09,
and MOT16-10);we run these against our script and compare
it to that of the ground truth.

V. RESULTS

The experimentation used three indicators to define a suc-
cessful trial. The first is stable bounding boxes which is
computed by dividing the average number of bounding boxes
per frame detected in our script with the average number of
bounding boxes per frame from the ground truth. The second
indicator is the average frames per second that results from the
controller.py script. And finally, we have a flickering number
of boxes indicator which is the total number of flickering
bounding boxes (detect ions that inconsistently track a given
person) through the data stream.

As evident in Figure 1, the MOT16-05 data set had the
highest average success rate with 95.64% accuracy. Whereas,
the MOT16-02 data set had the lowest average success rate
of 28.29% accuracy. The average success rate through all the
experiments yielded in a 58.79% accuracy.

In comparing the second indicator of average frames per
second, figure 2, MOT16-05 yielded the highest average
frames per second with 17.48 frames, in contrast to the
MOT16-04 data set that has an average of 9.58 frames per



Fig. 1. Stable Bounding Boxes determined by average detection per frame

second. The average frames per second through all the trials
was 12.32 frames.

The third indicator of flickering boxes is depicted in figure 3,
where MOT16-05 experienced the lowest number of flickering
boxes throughout the stream at only 3 flickers. In contrast,
the MOT16-04 data set experienced 40 flickers in the data
stream, showing that our script generally tended to have the
worst performance on the MOT16-04. The average number of
flickering boxes across the 5 tests was 16.2 flickers per data
set. This is relatively quite high considering that the average
number of detection made per frame per second was 7.87.

To summarize, in our experimentation the MOT16-05 was
the most successful data set based on the three indicators
and the MOT16-04 tended to be the worst performance.
Differences and inconsistencies can be attributed to YOLOv3-
PyTorch’s limitation on detecting the number of bounding
boxes given a specified cell as per the implementation and
as explained in the background. Another factor was that in
the case of high population density data streams like that
of MOT16-04. In these data sets, there were high levels of
occlusion which our algorithm was unable to track most of the
time. Specifically in the MOT16-04 data set too, the camera is
at a bird-eyes perspective which makes it harder to recognize
the people as moving objects to be tracked. In some of the
data sets, our algorithm had a lower accuracy when detecting
non-moving individuals who were either standing or sitting
down.

On another note however, our algorithm was successfully
able to track people who were within 100ft of the camera,
and in conditions where the movement of people to each other
was relatively slower. When there were less people in a given
frame, and the camera was placed at a direct frontal view,
the data yielded more positive results. As evidenced by the
MOT16-05 dataset, we tended to get successful results when
conditions better met the YOLOv3-PyTorch implementation.

Fig. 2. Average Number of Frames per second

Fig. 3. Inconsistent Bounding Box Detection in the entire data stream

VI. DISCUSSION

Tracking identities in real-time is more accurate in respect
to having people within 100ft of the camera, and when the
movement of people in relation to each other are not in high
density areas. It additionally provides evidence that YOLOv3-
PyTorch is not the strongest approach to consistently detect all
the people in a given frame and create its respective bounding
boxes. In terms of robotics applications, this can be applied for
further developments of real-time identity tracking where alter-
native approaches to YOLOv3 should be attempted. Since this
paper applied both YOLOv3 and DeepSORT, other research
should further implement the functionalities of DeepSORT
to accurately track people. The research conducted in this
paper contributes to the ever expanding field of robots tracking
people in real-time dynamic view-frames. Eventually, it can
be applied to the functionality of human-robot interactions to
have robots following people around.

VII. CONCLUSION

Although there have been previous approaches taken to
real-time identity tracking, complexities regarding occlusion,



density, and clarity of people in a given frame continue to
pose a challenge. In this paper, we further developed the
YOLOv3 and DeepSORT models (part of CNN architecture)
to better tackle the issue of occlusion and create more accurate
detections of people. Although to an extent our research was
successful, limitations regarding YOLOv3-PyTorch detection
models made it so we had a limited number of bounding boxes
tracked using our algorithm. We found the most success in
data sets that had direct camera views of the people walking,
and such that the people near the camera were within 100ft
of the lens. Tracking became harder in conditions of high
population densities that made occlusion a significant problem,
often switching the identities of the original people being
tracked.

This study shows that real-time object tracking is a viable
solution for problem spaces with relatively low amount of
objects. The findings of this study have important implications
for future work. Any future work that needs an identity tracker
or seeks to enhance identity tracking should start with this
study. This is mainly because of how this work mitigates
any flickering bounding boxes that could cause inaccuracies.
Additionally, this study also has potential improvements that
can be made to it in future work. Future studies could
approach this problem with more resources, such as GPUs
or supercomputers, and attempt to have tracking use a more
parallel computer architecture.

REFERENCES

[1] Yutong Ban, Xavier Alameda-Pineda, Fabien Badeig, Sileye Ba, and Radu
Horaud. Tracking a varying number of people with a visually-controlled
robotic head. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 4144–4151. IEEE, 2017.

[2] Ross Girshick. Fast r-cnn. In The IEEE International Conference on
Computer Vision (ICCV), December 2015.

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

[4] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv, 2018.

[5] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online
and realtime tracking with a deep association metric. In 2017 IEEE
international conference on image processing (ICIP), pages 3645–3649.
IEEE, 2017.


